This paper presents two hybrid beamforming (HYBF) designs for a multi-user multi-cell millimeter (mmWave) full-duplex (FD) system. The base stations (BSs) and the users are assumed to be suffering from the limited dynamic range (LDR) noise. Firstly, we present a centralized HYBF (C-HYBF) scheme based on alternating optimization. In general, the complexity of C-HYBF schemes scales quadratically as a function of the number of users, which is very undesirable. Moreover, tremendous computational power is required to optimize numerous variables jointly in FD. Another major drawback is that huge communication overhead is also required to transfer complete channel state information (CSI) to the central node every channel coherence time. To overcome these drawbacks, we present a very low-complexity and highly scalable cooperative per-link parallel and distributed (P$\&$D)-HYBF scheme. It allows each FD BS to update the beamformers for its users independently in parallel on different computational processors. Its complexity scales only linearly as the network size grows, making it desirable for the next generation of large and dense mmWave FD networks. Simulation results show that both designs significantly outperform the fully digital half-duplex (HD) system with only a few radio-frequency (RF) chains, achieve similar performance, and the P$\&$D-HYBF requires considerably less execution time.


翻译:本文为多用户多细胞(mmWave)全多元(FD)系统提供了两种混合波束(HYBF)设计。基站(BS)和用户被假定为受有限的动态范围(LDR)噪音的影响。首先,我们提出基于交替优化的中央 HYBF(C-HYBF)计划。一般来说,C-HYB计划的复杂性是按用户数量的一个函数来衡量,这是非常不可取的。此外,需要巨大的计算能力才能在FD中联合优化众多变量。另一个主要的缺点是,还需要巨大的通信管理费才能将完整的频道状态信息(CSI)传输到每个频道的中央节点。为了克服这些缺陷,我们提出了一个基于交替优化的中央 HYBF(C-HBF)计划(C-H-HB计划)的复杂度非常低,而且高度可扩缩的每链接(P$$D-D)-HB计划。它让每个DBS用户在不同的计算处理器上独立地更新其信号。由于网络的复杂程度需要相当长的时间比例,因此网络的模化和半硬的网络的模模模模模模的模版(MDFDFDFDFDM-M-M 的模的模版)系统需要才充分的模型的模版。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月14日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员