Autonomous Driving System (ADS) testing is crucial in ADS development, with the current primary focus being on safety. However, the evaluation of non-safety-critical performance, particularly the ADS's ability to make optimal decisions and produce optimal paths for autonomous vehicles (AVs), is equally vital to ensure the intelligence and reduce risks of AVs. Currently, there is little work dedicated to assessing ADSs' optimal decision-making performance due to the lack of corresponding oracles and the difficulty in generating scenarios with non-optimal decisions. In this paper, we focus on evaluating the decision-making quality of an ADS and propose the first method for detecting non-optimal decision scenarios (NoDSs), where the ADS does not compute optimal paths for AVs. Firstly, to deal with the oracle problem, we propose a novel metamorphic relation (MR) aimed at exposing violations of optimal decisions. The MR identifies the property that the ADS should retain optimal decisions when the optimal path remains unaffected by non-invasive changes. Subsequently, we develop a new framework, Decictor, designed to generate NoDSs efficiently. Decictor comprises three main components: Non-invasive Mutation, MR Check, and Feedback. The Non-invasive Mutation ensures that the original optimal path in the mutated scenarios is not affected, while the MR Check is responsible for determining whether non-optimal decisions are made. To enhance the effectiveness of identifying NoDSs, we design a feedback metric that combines both spatial and temporal aspects of the AV's movement. We evaluate Decictor on Baidu Apollo, an open-source and production-grade ADS. The experimental results validate the effectiveness of Decictor in detecting non-optimal decisions of ADSs. Our work provides valuable and original insights into evaluating the non-safety-critical performance of ADSs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2021年2月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员