Message passing neural networks (MPNN) have seen a steep rise in popularity since their introduction as generalizations of convolutional neural networks to graph-structured data, and are now considered state-of-the-art tools for solving a large variety of graph-focused problems. We study the generalization error of MPNNs in graph classification and regression. We assume that graphs of different classes are sampled from different random graph models. We show that, when training a MPNN on a dataset sampled from such a distribution, the generalization gap increases in the complexity of the MPNN, and decreases, not only with respect to the number of training samples, but also with the average number of nodes in the graphs. This shows how a MPNN with high complexity can generalize from a small dataset of graphs, as long as the graphs are large. The generalization bound is derived from a uniform convergence result, that shows that any MPNN, applied on a graph, approximates the MPNN applied on the geometric model that the graph discretizes.


翻译:电文传递神经网络(MPNN)自被引入为图表结构化数据的进化神经网络(MPNN)以来,其受欢迎程度急剧上升,目前被视为解决大量图表重点问题的最先进的工具。我们研究了图解分类和回归中MPNNNs的通用错误。我们假设不同类别的图表是从不同的随机图表模型中抽样的。我们显示,在对MPNNN进行关于从这种分布中抽样的数据集的培训时,MPNN的复杂程度将增加,不仅在培训样本的数量方面,而且在图形中平均节点的数量方面,也减少了。这表明,只要图形是大,一个高度复杂的MPNNN如何从小的图表数据集中进行概括。一般化的界限来自一个统一的组合结果,即显示任何MPNNN在图表上应用的任何组合,都接近了在图形分解的几何模型上应用的MPNN。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
ArXiv2021 | Customized Graph Neural Networks
图与推荐
1+阅读 · 2021年12月27日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月8日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
ArXiv2021 | Customized Graph Neural Networks
图与推荐
1+阅读 · 2021年12月27日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
0+阅读 · 2022年7月8日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员