We present NeRF-SR, a solution for high-resolution (HR) novel view synthesis with mostly low-resolution (LR) inputs. Our method is built upon Neural Radiance Fields (NeRF) that predicts per-point density and color with a multi-layer perceptron. While producing images at arbitrary scales, NeRF struggles with resolutions that go beyond observed images. Our key insight is that NeRF benefits from 3D consistency, which means an observed pixel absorbs information from nearby views. We first exploit it by a super-sampling strategy that shoots multiple rays at each image pixel, which further enforces multi-view constraint at a sub-pixel level. Then, we show that NeRF-SR can further boost the performance of super-sampling by a refinement network that leverages the estimated depth at hand to hallucinate details from related patches on only one HR reference image. Experiment results demonstrate that NeRF-SR generates high-quality results for novel view synthesis at HR on both synthetic and real-world datasets without any external information.
翻译:我们提出NeRF-SR,这是高分辨率(HR)新观点合成的解决方案,大部分是低分辨率(LR)输入。我们的方法是建立在神经辐射场上,用多层光谱预测每点密度和颜色。在任意制作图像时,NeRF与超出观察图像的分辨率搏斗。我们的主要见解是,NeRF从3D一致性中受益,这意味着观测到的像素吸收了附近视图中的信息。我们首先利用超抽样战略对每个图像像素进行射击,进一步在次像素水平上实施多视限制。然后,我们表明NERF-SR可以通过一个精细网络进一步提升超级抽样的性能,该网络利用估计的深度,从仅一个HR参考图像上的有关补丁点获得致幻剂细节。实验结果表明,NRF-SR产生高质量的结果,用于在没有外部信息的情况下在HR合成和现实世界数据集上进行新的视觉合成。