This paper establishes and analyzes a second-order accurate numerical scheme for the nonlinear partial integrodifferential equation with a weakly singular kernel. In the time direction, we apply the Crank-Nicolson method for the time derivative, and the product-integration (PI) rule is employed to deal with Riemann-Liouville fractional integral. From which, the non-uniform meshes are utilized to compensate for the singular behavior of the exact solution at $t=0$ so that our method can reach second-order convergence for time. In order to formulate a fully discrete implicit difference scheme, we employ a standard centered difference formula for the second-order spatial derivative, and the Galerkin method based on piecewise linear test functions is used to approximate the nonlinear convection term. Then we derive the existence and uniqueness of numerical solutions for the proposed implicit difference scheme. Meanwhile, stability and convergence are proved by means of the discrete energy method. Furthermore, to demonstrate the effectiveness of the proposed method, we utilize a fixed point iterative algorithm to calculate the discrete scheme. Finally, numerical experiments illustrate the feasibility and efficiency of the proposed scheme, in which numerical results are consistent with our theoretical analysis.
翻译:本文建立并分析了非线性部分内分异方程式的第二顺序精确数字方案。 在时间方向上, 我们对时间衍生物应用Crank- Nicolson 方法, 并使用产品集成( PI) 规则处理Riemann- Liouville 分集。 从中, 非单式的摩西用美元来补偿精确溶解的奇异行为, 以美元=0美元来补偿我们的方法在时间上达到第二顺序的趋同。 为了制定完全离散的隐含差异方案, 我们使用二阶空间衍生物的标准中心差异公式, 而基于小线性测试功能的Galerkin 方法用于接近非线性对等术语。 然后, 我们从中得出拟议隐含差异方案的数字解决方案的存在和独特性。 同时, 以离散能源方法的方式证明了稳定性和趋同性。 此外, 为了证明拟议方法的有效性, 我们使用固定的点迭代算法来计算离心性方案。 最后, 数字实验显示了我们提议的方案的可行性和有效性, 与拟议数字分析一致。