The objective of this paper is to propose a hyperbolic relaxation technique for the dispersive Serre-Green-Naghdi equations (also known as the fully non-linear Boussinesq equations) with full topography effects introduced in Green, A.E. and Naghdi, P.M. (J. Fluid Mech., 78, 237-246, 1976) and Seabra-Santos el al (J. Fluid Mec.h, 176, 117-134, 1997). This is done by revisiting a similar relaxation technique introduced in Guermond el al (J. Comput. Phys., 399, 108917, 2019) with partial topography effects. We also derive a family of analytical solutions for the one-dimensional dispersive Serre-Green-Naghdi equations that are used to verify the correctness the proposed relaxed model. The method is then numerically illustrated and validated by comparison with experimental results.
翻译:本文的目的是为分散式Serre-Green-Naghdi方程式(又称完全非线性Bussinesq方程式)提出双曲放松技术,在Green、A.E.和Naghdi、P.M.(J.Fluid Mech.,78,237-246,1976年)和Seabra-Santos el al(J.Fluid Mec.h,176,117-134,1997年)中引入了完全非线性Bussinesq方程式(J.Comput.Phys.,399,108917,2019年)中引入了全方位地形效应,我们还为单维分散式Serre-Greg-Naghdi方程式制作了一套分析解决方案,用于核实提议的放松模式的正确性,然后用数字说明方法,并与实验结果进行比较加以验证。