Graph analysis involves a high number of random memory access patterns. Earlier research has shownthat the cache miss latency is responsible for more than half of the graph processing time, with the CPU execution having the smaller share. There has been significant study on decreasing the CPU computing time for example, by employing better cache prefetching and replacement policies. In thispaper, we study the various methods that do so by attempting to decrease the CPU cache miss ratio.Graph Reordering attempts to exploit the power-law distribution of graphs -- few sparsely-populated vertices in the graph have high number of connections -- to keep the frequently accessed vertices together locally and hence decrease the cache misses. However, reordering the graph by keeping the hot vertices together may affect the spatial locality of the graph, and thus add to the total CPU compute time.Also, we also need to have a control over the total reordering time and its inverse relation with thefinal CPU execution timeIn order to exploit this trade-off between reordering as per vertex hotness and spatial locality, we introduce the light-weight Community-based Reordering. We attempt to maintain the community-structureof the graph by storing the hot-members in the community locally together. The implementation also takes into consideration the impact of graph diameter on the execution time. We compare our implementation with other reordering implementations and find a significantly better result on five graph processing algorithms: BFS, CC, CCSV, PR and BC. Lorder achieved speed-up of upto 7x and an average speed-up of 1.2x as compared to other reordering algorithms


翻译:图片分析包含大量随机存储存取模式。早期的研究显示,缓存误留错位是图处理时间一半以上的一半以上的原因,而CPU执行的比例较小。例如,对降低CPU计算时间进行了大量研究,例如,采用更好的缓存预拉和替换政策来减少CPU计算时间。在本文件中,我们通过尝试降低CPU缓存误差比率来研究这样做的各种方法。格子重新排序尝试利用图表的权力法分布 -- -- 平方图中鲜为人知的悬浮符数量众多 -- -- 以保持经常访问的悬浮在本地,从而减少缓存误差。然而,通过保持热的悬浮点来重新排序CPU计算时间,从而增加CPU缓存误差比率。因此,我们还需要控制总调整时间及其与最终CPU执行时间的反比值。为了利用这一交易,将经常访问的峰值调整与空间偏热点联系起来,从而减少缓存误差。但是,我们引入了通过保持热点头的电路段调整图表执行速度,我们大幅调整了共同体的递增速度,从而测量了共同体执行。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员