Inspired by mixture-of-experts models and the analysis of the hidden activations of neural networks, we introduce a novel unsupervised anomaly detection method called ARGUE. Current anomaly detection methods struggle when the training data does contain multiple notions of normal. We designed ARGUE as a combination of multiple expert networks, which specialise on parts of the input data. For its final decision, ARGUE fuses the distributed knowledge across the expert systems using a gated mixture-of-experts architecture. ARGUE achieves superior detection performance across several domains in a purely data-driven way and is more robust to noisy data sets than other state-of-the-art anomaly detection methods.
翻译:在专家混合模型和神经网络隐藏激活分析的启发下,我们引入了一种名为ARGUE的新颖的未经监督的异常探测方法。当培训数据确实包含多种正常概念时,当前异常探测方法会挣扎。我们把ARGUE设计成多个专家网络的组合,这些专家网络专门研究输入数据的某些部分。为了作出最后决定,ARGUE利用专家混合封闭结构将分布在专家系统之间的知识整合起来。ARGUE以纯数据驱动的方式在多个领域取得优异的检测性能,并且比其他最先进的异常探测方法更强大,对吵闹的数据集更强大。