This study leverages narrative from global newspapers to construct theme-based knowledge graphs about world events, demonstrating that features extracted from such graphs improve forecasts of industrial production in three large economies compared to a number of benchmarks. Our analysis relies on a filtering methodology that extracts "backbones" of statistically significant edges from large graph data sets. We find that changes in the eigenvector centrality of nodes in such backbones capture shifts in relative importance between different themes significantly better than graph similarity measures. We supplement our results with an interpretability analysis, showing that the theme categories "disease" and "economic" have the strongest predictive power during the time period that we consider. Our work serves as a blueprint for the construction of parsimonious - yet informative - theme-based knowledge graphs to monitor in real time the evolution of relevant phenomena in socio-economic systems.
翻译:这项研究利用全球报纸的叙述来构建关于世界事件的基于主题的知识图表,表明从这些图表中提取的特征与一些基准相比,改善了三大经济体工业生产的预测。我们的分析依赖于一种过滤方法,从大型图表数据集中提取具有统计意义边缘的“后骨 ” 。我们发现,在这种骨干中节点的灵源中心作用的变化反映了不同主题之间相对重要性的转变,大大优于图形相似度测量。我们用可解释性分析来补充我们的结果,表明在我们考虑的时期内,“残疾”和“经济”这两个主题类别具有最强的预测力。我们的工作作为构建可理解性――但信息丰富的――基于主题的知识图表的蓝图,以实时监测社会经济体系中相关现象的演变。