近年来,知识图谱(KG)的构建和应用得到了快速的发展。大量的KGs,如Freebase、DBpedia、YAGO和NELL,已经被创建并成功地应用于许多实际应用中,从语义解析和命名实体消歧到信息提取和问答。KG是由实体(节点)和关系(不同类型的边)组成的多关系图。每条边都表示为形式(头实体、关系、尾实体)的三个部分,也称为事实,表示两个实体通过特定的关系连接在一起,例如(AlfredHitchcock, DirectorOf, Psycho)。虽然在表示结构化数据方面很有效,但是这类三元组的底层符号特性通常使KGs很难操作。

为了解决这个问题,提出了一种新的研究方向——知识图谱嵌入。关键思想是嵌入KG的组件,包括将实体和关系转化为连续的向量空间,从而简化操作,同时保留KG的原有的结构。那些实体和关系嵌入能进一步应用于各种任务中,如KG补全、关系提取、实体分类和实体解析。

成为VIP会员查看完整内容
65

相关内容

【斯坦福CS224W】图神经网络GNN高级主题,60页ppt
专知会员服务
71+阅读 · 2021年3月5日
【斯坦福CS224N硬核课】 问答系统,陈丹琦讲解,79页ppt
专知会员服务
72+阅读 · 2021年2月23日
【斯坦福CS224W】知识图谱推理,84页ppt
专知会员服务
119+阅读 · 2021年2月19日
【斯坦福CS520】向量空间中嵌入的知识图谱推理,48页ppt
专知会员服务
100+阅读 · 2020年6月11日
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
【GNN】R-GCN:GCN 在知识图谱中的应用
深度学习自然语言处理
11+阅读 · 2020年5月4日
知识图谱嵌入(KGE):方法和应用的综述
AI科技评论
122+阅读 · 2019年8月26日
Arxiv
7+阅读 · 2020年10月9日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
30+阅读 · 2019年3月13日
Explanatory Graphs for CNNs
Arxiv
4+阅读 · 2018年12月18日
VIP会员
微信扫码咨询专知VIP会员