End-to-end networks trained for task-oriented dialog, such as for recommending restaurants to a user, suffer from out-of-vocabulary (OOV) problem -- the entities in the Knowledge Base (KB) may not be seen by the network at training time, making it hard to use them in dialog. We propose a novel Hierarchical Pointer Generator Memory Network (HyP-MN), in which the next word may be generated from the decode vocabulary or copied from a hierarchical memory maintaining KB results and previous utterances. This hierarchical memory layout along with a novel KB dropout helps to alleviate the OOV problem. Evaluating over the dialog bAbI tasks, we find that HyP-MN outperforms state-of-the-art results, with considerable improvements (10% on OOV test set). HyP-MN also achieves competitive performances on various real-world datasets such as CamRest676 and In-car assistant dataset.
翻译:接受过任务导向对话培训的端对端网络,例如向用户推荐餐厅,遇到校外问题 -- -- 知识库(KB)的实体在培训时可能看不到,因此很难在对话中使用它们。我们建议建立一个新型的等级式指针发电机内存网络(HyP-MN),在该网络中,下个单词可以从解码词汇中生成,或从维持KB结果和先前语句的等级内存中复制出来。这种等级级内存布局加上新颖的KB辍学有助于缓解OOV问题。在评估BABI对话任务时,我们发现HYP-MN优于最新结果,并有相当大的改进(OOVT测试集10%)。 HYP-MN在诸如CamRest676和内车助理数据集等各种真实世界数据集上也取得了竞争性的性表现。