Decades after their inception, random forests continue to provide state-of-the-art accuracy in a variety of learning problems, outperforming in this respect alternative machine learning algorithms such as decision trees or even neural networks. However, being an ensemble method, the one aspect where random forests tend to severely underperform decision trees is interpretability. In the present work, we propose a post-hoc approach that aims to have the best of both worlds: the accuracy of random forests and the interpretability of decision trees. To this end, we present two forest-pruning methods to find an optimal sub-forest within a given random forest, and then, when applicable, combine the selected trees into one. Our first method relies on constrained exhaustive search, while our second method is based on an adaptation of the LASSO methodology. Extensive experiments over synthetic and real world datasets show that, in the majority of scenarios, at least one of the two methods proposed is more accurate than the original random forest, while just using a small fraction of the trees, aiding result interpretability. Compared to current state-of-the-art forestpruning methods, namely sequential forward selection and (a variation of) sequential backward selection, our methods tend to outperform both of them, whether in terms of accuracy, number of trees employed, or both.
翻译:暂无翻译