The Difference in Difference (DiD) estimator is a popular estimator built on the "parallel trends" assumption. To increase the plausibility of this assumption, a natural idea is to match treated and control units prior to a DiD analysis. In this paper, we characterize the bias of matching prior to a DiD analysis under a linear structural model. Our framework allows for both observed and unobserved confounders that have time varying effects. Given this framework, we find that matching on baseline covariates reduces the bias associated with these covariates, when compared to the original DiD estimator. We further find that additionally matching on the pre-treatment outcomes has both cost and benefit. First, it mitigates the bias associated with unobserved confounders, since matching on pre-treatment outcomes partially balances these unobserved confounders. This reduction is proportional to the reliability of the outcome, a measure of how coupled the outcomes are with these latent covariates. On the other hand, we find that matching on the pre-treatment outcome undermines the second "difference" in a DiD estimate by forcing the treated and control group's pre-treatment outcomes to be equal. This injects bias into the final estimate, analogous to the case when parallel trends holds. We extend our bias results to multivariate confounders with multiple pre-treatment periods and find similar results. Finally, we provide heuristic guidelines to practitioners on whether to match prior to their DiD analysis, along with a method for roughly estimating the reduction in bias. We illustrate our guidelines by reanalyzing a recent empirical study that used matching prior to a DiD analysis to explore the impact of principal turnover on student achievement. We find that the authors' decision to match on the pre-treatment outcomes was crucial in making the estimated treatment effect more credible.


翻译:差异( DID) 估计值的差异是一个以“ 平行趋势” 假设为基础的广受欢迎的估计值。 为了提高这一假设的可信度, 一个自然的想法是匹配 DiD 分析之前的处理和控制单位。 在本文中, 我们将匹配之前的匹配偏差定性为直线结构模型的 DiD 分析之前的匹配偏差。 我们的框架允许有时间影响不同的观察和未观察的共鸣者。 基于这个框架, 我们发现在基线共变中匹配会减少与这些共变相关的偏差。 与最初的 DiD 估计值相比, 我们进一步发现在预处理结果上的额外匹配会显示预处理结果具有成本和效益。 首先, 它会减轻与未观察的共振分析之前匹配的偏差。 这种降低与结果的可靠性成比例成比, 我们发现在预处理结果中会破坏第二个“ 差异 ” 。 在前期中, 我们的预处理结果会显示比值会破坏第二个“ D ”, 和排序结果, 在前的推算中, 我们的推算到最终结果。

0
下载
关闭预览

相关内容

专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月5日
Arxiv
0+阅读 · 2023年1月4日
VIP会员
相关VIP内容
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员