We provide a categorical notion called uncertain bisimilarity, which allows to reason about bisimilarity in combination with a lack of knowledge about the involved systems. Such uncertainty arises naturally in automata learning algorithms, where one investigates whether two observed behaviours come from the same internal state of a black-box system that can not be transparently inspected. We model this uncertainty as a set functor equipped with a partial order which describes possible future developments of the learning game. On such a functor, we provide a lifting-based definition of uncertain bisimilarity and verify basic properties. Beside its applications to Mealy machines, a natural model for automata learning, our framework also instantiates to an existing compatibility relation on suspension automata, which are used in model-based testing. We show that uncertain bisimilarity is a necessary but not sufficient condition for two states being implementable by the same state in the black-box system. To remedy the failure of the one direction, we characterize uncertain bisimilarity in terms of coalgebraic simulations.
翻译:我们提供了一种称为不确定双模态性的范畴概念,它允许在涉及系统的知识不足时进行双模态性推理。这样的不确定性自然地出现在自动机学习算法中,其中我们研究两个观察到的行为是否来自一个无法透明地检查的黑盒系统的内部状态。我们将这种不确定性建模为一个带有偏序的集合函子,它描述了学习游戏未来可能的发展。基于这样的函子,我们提供了一个基于升格的不确定双模态性定义并验证了基本属性。除了在Mealy机器中的应用之外,Mealy机器是自动机学习的自然模型,我们的框架还实例化为悬挂自动机中的现有兼容性关系,悬挂自动机在基于模型的测试中得到了广泛应用。我们表明不确定双模态性是两个状态被黑盒系统中的同一状态实现的必要条件,但不是充分条件。为了弥补一个方向的失败,我们利用共代数模拟的方式描述了不确定双模态性。