The field of mathematical morphology offers well-studied techniques for image processing. In this work, we view morphological operations through the lens of persistent homology, a tool at the heart of the field of topological data analysis. We demonstrate that morphological operations naturally form a multiparameter filtration and that persistent homology can then be used to extract information about both topology and geometry in the images as well as to automate methods for optimizing the study and rendering of structure in images. For illustration, we apply this framework to analyze noisy binary, grayscale, and color images.
翻译:数学形态学领域为图像处理提供了研究周全的技术。 在这项工作中,我们通过持续同族学的透镜来观察形态学操作,这是地形数据分析领域核心的一个工具。我们证明形态学操作自然形成多参数过滤,然后可以使用持久性同理学来提取图像中的地形学和几何学信息,以及优化图像中结构的研究和构造的自动化方法。例如,我们应用这个框架来分析吵闹的二进制、灰度和彩色图像。