X-ray Ptychography is an advanced computational microscopy technique which is delivering exceptionally detailed quantitative imaging of biological and nanotechnology specimens. However coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability. In this work we formally introduced these actors, solving the whole reconstruction as an optimisation problem. A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction. Automatic procedures are indeed crucial to reduce the time for a reliable analysis, which has a significant impact on all the fields that use this kind of microscopy. We implemented our algorithm in our software framework, SciComPty, releasing it as open-source. We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.


翻译:X射线外观学是一种先进的计算显微镜技术,它正在提供生物和纳米技术样本的非常详细的定量成像,尽管在传播距离、位置错误和部分一致性方面粗略的相配往往威胁到实验的可行性。在这项工作中,我们正式引进了这些行为者,解决了整个重建的优化问题。现代深层学习框架被用来自主地纠正设置不协调的问题,从而改进了结构学重建的质量。自动程序对于缩短进行可靠分析的时间确实至关重要,因为这种分析对使用这种显微镜的所有领域都具有重大影响。我们在软件框架中应用了我们的算法,SciComPty,作为开放源释放了它。我们在合成数据集和Elettra同步器设施双光谱光谱上获取的真实数据上测试了我们的系统。

0
下载
关闭预览

相关内容

【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
204+阅读 · 2020年1月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
5+阅读 · 2020年10月2日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
35+阅读 · 2020年1月2日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
相关论文
Top
微信扫码咨询专知VIP会员