In this era of big data, all scientific disciplines are evolving fast to cope up with the enormity of the available information. So is statistics, the queen of science. Big data are particularly relevant to spatio-temporal statistics, thanks to much-improved technology in satellite based remote sensing and Geographical Information Systems. However, none of the existing approaches seem to meet the simultaneous demand of reality emulation and cheap computation. In this article, with the Levy random fields as the starting point, e construct a new Bayesian nonparametric, nonstationary and nonseparable dynamic spatio- temporal model with the additional realistic property that the lagged spatio-temporal correlations converge to zero as the lag tends to infinity. Although our Bayesian model seems to be intricately structured and is variable-dimensional with respect to each time index, we are able to devise a fast and efficient parallel Markov Chain Monte Carlo (MCMC) algorithm for Bayesian inference. Our simulation experiment brings out quite encouraging performance from our Bayesian Levy-dynamic approach. We finally apply our Bayesian Levy-dynamic model and methods to a sea surface temperature dataset consisting of 139,300 data points in space and time. Although not big data in the true sense, this is a large and highly structured data by any standard. Even for this large and complex data, our parallel MCMC algorithm, implemented on 80 processors, generated 110,000 MCMC realizations from the Levy-dynamic posterior within a single day, and the resultant Bayesian posterior predictive analysis turned out to be encouraging. Thus, it is not unreasonable to expect that with significantly more computing resources, it is feasible to analyse terabytes of spatio-temporal data with our new model and methods.
翻译:在这个大数据时代,所有科学学科都在快速发展,以适应现有信息的巨大性能。统计也是如此,科学女王。大数据与时空统计特别相关,因为卫星遥感和地理信息系统的技术大大改进。然而,现有的方法似乎都没有满足现实模拟和廉价计算同时需求。在这一篇文章中,以利维随机字段为起点,设计一个新的巴伊西亚非参数、非静止和非可分离的动态Spatio-时间模型,并增加现实的属性,即:随着时间的变差趋向不定,落后的spatio-时空相关数据将集中到零。虽然我们的巴伊西亚模型似乎结构复杂,而且每个时间指数都有差异性。我们能够设计一个快速而高效的平行的Markov链 Monte Car(MC ) 计算贝耶斯史诗的理论。我们的模拟实验从我们巴伊西亚的海流动力学日方法中产生了相当令人鼓舞的业绩。我们最后应用了我们的巴伊斯海流-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-