Network embedding is aimed at mapping nodes in a network into low-dimensional vector representations. Graph Neural Networks (GNNs) have received widespread attention and lead to state-of-the-art performance in learning node representations. However, most GNNs only work in unsigned networks, where only positive links exist. It is not trivial to transfer these models to signed directed networks, which are widely observed in the real world yet less studied. In this paper, we first review two fundamental sociological theories (i.e., status theory and balance theory) and conduct empirical studies on real-world datasets to analyze the social mechanism in signed directed networks. Guided by related sociological theories, we propose a novel Signed Directed Graph Neural Networks model named SDGNN to learn node embeddings for signed directed networks. The proposed model simultaneously reconstructs link signs, link directions, and signed directed triangles. We validate our model's effectiveness on five real-world datasets, which are commonly used as the benchmark for signed network embedding. Experiments demonstrate the proposed model outperforms existing models, including feature-based methods, network embedding methods, and several GNN methods.


翻译:网络嵌入旨在将网络中的节点映射到低维向量表示。图神经网络(GNNs)受到了广泛关注,并在学习节点表示方面实现了最新技术。然而,大多数GNN仅适用于无符号网络,而仅存在正链接。将这些模型转移到有向有符号网络(在现实世界中广泛观察但不常被研究)并不容易。在本文中,我们首先回顾了两个基本的社会学理论(即状态理论和平衡理论),并在真实世界数据集上进行实证研究以分析有向有符号网络中的社会机制。在相关的社会学理论指导下,我们提出了一种名为SDGNN的新型有向有符号图神经网络模型,用于学习有向有符号网络中的节点嵌入。所提出的模型同时重构链接符号、链接方向和有向有符号三角形。我们验证了我们模型在五个真实数据集上的有效性,这些数据集通常用作有符号网络嵌入的基准。实验证明,所提出的模型优于现有模型,包括基于特征的方法、网络嵌入方法和几种GNN方法。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
110+阅读 · 2020年2月22日
近期必读的5篇 WSDM 2020【图神经网络(GNN)】相关论文
专知会员服务
57+阅读 · 2020年1月10日
一文带你浏览Graph Transformers
图与推荐
2+阅读 · 2022年7月14日
【GNN】图神经网络入门之GRN图循环网络
深度学习自然语言处理
17+阅读 · 2020年5月9日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2021年7月20日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
35+阅读 · 2020年1月2日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
110+阅读 · 2020年2月22日
近期必读的5篇 WSDM 2020【图神经网络(GNN)】相关论文
专知会员服务
57+阅读 · 2020年1月10日
相关资讯
一文带你浏览Graph Transformers
图与推荐
2+阅读 · 2022年7月14日
【GNN】图神经网络入门之GRN图循环网络
深度学习自然语言处理
17+阅读 · 2020年5月9日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员