Combinatorial games are widely used in finite model theory, constraint satisfaction, modal logic and concurrency theory to characterize logical equivalences between structures. In particular, Ehrenfeucht-Fraisse games, pebble games, and bisimulation games play a central role. We show how each of these types of games can be described in terms of an indexed family of comonads on the category of relational structures and homomorphisms. The index $k$ is a resource parameter which bounds the degree of access to the underlying structure. The coKleisli categories for these comonads can be used to give syntax-free characterizations of a wide range of important logical equivalences. Moreover, the coalgebras for these indexed comonads can be used to characterize key combinatorial parameters: tree-depth for the Ehrenfeucht-Fraisse comonad, tree-width for the pebbling comonad, and synchronization-tree depth for the modal unfolding comonad. These results pave the way for systematic connections between two major branches of the field of logic in computer science which hitherto have been almost disjoint: categorical semantics, and finite and algorithmic model theory.
翻译:组合游戏被广泛用于限定模型理论、 约束性满意度、 模式逻辑 和 货币理论, 以描述结构之间的逻辑等同性。 特别是, Ehrenfeucht- Fraisse 游戏、 泡泡游戏、 和刺激游戏, 扮演着中心角色 。 我们展示了这些类型的游戏如何用一个在关系结构和同质体类别上的共鸣索引式组合来描述。 指数$k$是一个资源参数, 它限制进入基本结构的程度 。 这些comonads 的 coKleisli 类别可以用来给一系列重要的逻辑等同性提供无加税特性。 此外, 这些被索引化的comonads 的煤热布拉可以用来描述关键的组合参数: Ehrenfecht- Fraisse comonad 、 pool- comonad 的树边框, 以及 modalmodal comonad 的同步性树木深度 。 这些结果为两个主要模型领域之间的系统性联系铺平了道路, 以及计算机逻辑学的精确性逻辑学系。