Although knowledge bases play an important role in many domains (including in archives, where they are sometimes used for entity extraction and semantic annotation tasks), it is challenging to build knowledge bases by hand. This is owing to a number of factors: Knowledge bases must be accurate, up-to-date, comprehensive, and as flexible and as efficient as possible. These requirements mean a large undertaking, in the form of extensive work by subject matter experts (such as scientists, programmers, archivists, and other information professionals). Even when successfully engineered, manually built knowledge bases are typically one-off, use-case-specific, non-standardized, hard-to-maintain solutions. We present a scalable, flexible, and extensible architecture for knowledge base construction frameworks. As a work in progress, we extend a specific framework to address some of its design limitations. The contributions presented in this short paper can shed a light on the suitability of using AKBC frameworks for computational use cases in this domain and provide future directions for building improved AKBC frameworks.
翻译:虽然知识基础在许多领域(包括在档案库中,有时用于实体提取和语义说明任务)发挥重要作用,但用手建立知识基础具有挑战性,原因很多:知识基础必须准确、最新、全面、灵活、尽可能高效,这些要求意味着以专题专家(如科学家、程序员、档案员和其他信息专业人员)广泛工作的形式开展大规模工作。即使成功设计、人工建造的知识基础通常是一次性的、使用特定个案的、非标准化的、难以维护的解决方案。我们为知识基础建设框架提供了一个可扩展、灵活和可扩展的结构。作为进展中的一项工作,我们扩展了一个具体框架,以解决其设计上的一些局限性。本简短文件中提供的材料可以说明使用AKBC框架来计算这一领域的案件是否合适,并为建立经改进的AKBC框架提供未来方向。