A typical machine learning (ML) development cycle for edge computing is to maximise the performance during model training and then minimise the memory/area footprint of the trained model for deployment on edge devices targeting CPUs, GPUs, microcontrollers, or custom hardware accelerators. This paper proposes a methodology for automatically generating predictor circuits for classification of tabular data with comparable prediction performance to conventional ML techniques while using substantially fewer hardware resources and power. The proposed methodology uses an evolutionary algorithm to search over the space of logic gates and automatically generates a classifier circuit with maximised training prediction accuracy. Classifier circuits are so tiny (i.e., consisting of no more than 300 logic gates) that they are called "Tiny Classifier" circuits, and can efficiently be implemented in ASIC or on an FPGA. We empirically evaluate the automatic Tiny Classifier circuit generation methodology or "Auto Tiny Classifiers" on a wide range of tabular datasets, and compare it against conventional ML techniques such as Amazon's AutoGluon, Google's TabNet and a neural search over Multi-Layer Perceptrons. Despite Tiny Classifiers being constrained to a few hundred logic gates, we observe no statistically significant difference in prediction performance in comparison to the best-performing ML baseline. When synthesised as a Silicon chip, Tiny Classifiers use 8-56x less area and 4-22x less power. When implemented as an ultra-low cost chip on a flexible substrate (i.e., FlexIC), they occupy 10-75x less area and consume 13-75x less power compared to the most hardware-efficient ML baseline. On an FPGA, Tiny Classifiers consume 3-11x fewer resources.
翻译:用于边缘计算的一个典型的机器学习(ML)开发周期是,在模型培训期间最大限度地优化性能,然后将经过训练的模型的内存/区域足迹减少到最小化,用于针对CPU、GPU、微控制器或定制硬件加速器的边缘装置上部署。本文提出一种方法,用于自动生成预测电路,将表列数据与常规 ML 技术的预测性能进行比较,同时使用大量硬件资源和功率。拟议方法使用进化算法搜索逻辑门的空间,并自动生成具有最高培训预测精确度的分类电路。分类电路非常小(即由不超过300个逻辑门组成),因此被称为“Tiny 分类器” 电路,可以在ASIC或FPGA上高效地实施。我们从实验性地评估了自动的最小化分类电路的生成方法,或“自动的铁级变压器”在广泛的表格数据集上进行搜索,在亚马逊的AutGGL、Google's TabliNet 和对多级级变压的电路段进行微量搜索,在Silcial-crealalal-lax 10-lical-lical-lax 上,在10-lical-lial-listal-listal-lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax laut lax lax laut lax lax lax lax lax lax lax lax lax lax lax lax lax laut lax lax lax lax lax lax lax lax lax lax disal laut lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax la </s>