项目名称: 空气绝缘层CuPc单晶纳米线场效应NO2传感器及其机理研究

项目编号: No.51273036

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 汤庆鑫

作者单位: 东北师范大学

项目金额: 80万元

中文摘要: NO2是一种有毒气体,也是最常见的空气污染物之一,对其浓度的精确监控在健康和安全上具有重要意义。目前,商业化半导体NO2传感器的灵敏度为100ppb,不能满足低浓度环境监测的需要。CuPc是一种典型的NO2敏感材料,升温下薄膜器件的最小响应浓度达到40ppb。申请人拟采用空气绝缘层制备单根单晶CuPc纳米线场效应NO2传感器,最低响应浓度目标为10ppb,并通过固体和空气绝缘层传感器性能对比,进行传感器微观响应机理研究。传感器高的灵敏度基于:单根纳米线大的表体积比;栅极使所有载流子几乎都集中在场效应器件半导体/绝缘层界面处的导电沟道中;空气栅极绝缘层使气体分子直接吸附在导电沟道表面。同时,场效应传感器可集成到电路中,进一步放大灵敏度。除沟道电流外,场效应传感器的阈值电压、迁移率等参数变化也能反映气体浓度变化,有利于通过多参数响应提高传感器准确性,也可在此基础上尝试气体甄别。

中文关键词: 空气绝缘层;场效应器件;一维微纳单晶;有机半导体;气体传感器

英文摘要: NO2 is a toxic gas that is released into the atmosphere, and has become one of the most common air pollutants. The lowest concentration of commercial NO2 sensor based on semiconductor is 100 ppb, which is not enough for the environment monitoring. CuPc is sensitive to NO2. Its lowest concentration reaches 40 ppb at the heated temperature. The applicant plans to fabicated the field-effect NO2 sensor based on the single CuPc nanowire and the air dielectric. The lowest concentration is expected to be 10 ppb. The air dielectric sensor will be compared with the solid dielectric sensor in order to study the response mechanism. Such a device is expected to improve the sensitivity which is attributed to: i)the single nanowire with the high aspect ratio has the high surface-volume ratio; ii)the gate voltage limits most of carriers in the conductive channel which locates in only a few atomic layer of the semiconductor in the interface between the semiconductor and the dielectric; iii)the air dielectric facilitates the direct adsorption of the gas molecules onto the surface of the conductive channel and avoids the diffusion process of the molecules in the semiconductor. Other advantage is that the field-effect device can be integrated into the circuits to further improve the sensitivity. In addition, the measurements of a

英文关键词: gas dielectric;field effect transistors;1D micro/nano single crystals;organic semiconductor;gas sensors

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
15+阅读 · 2021年6月6日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
67+阅读 · 2020年10月24日
DigiTimes:下一代iPhone的芯片将基于“4nm”工艺
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
自动驾驶车载激光雷达技术现状分析
智能交通技术
16+阅读 · 2019年4月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员