In this paper, we learn to classify visual object instances, incrementally and via self-supervision (self-incremental). Our learner observes a single instance at a time, which is then discarded from the dataset. Incremental instance learning is challenging, since longer learning sessions exacerbate forgetfulness, and labeling instances is cumbersome. We overcome these challenges via three contributions: \textit{i).} We propose VINIL, a self-incremental learner that can learn object instances sequentially, \textit{ii).} We equip VINIL with self-supervision to by-pass the need for instance labelling, \textit{iii).} We compare VINIL to label-supervised variants on two large-scale benchmarks~\cite{core50,ilab20m}, and show that VINIL significantly improves accuracy while reducing forgetfulness.
翻译:在本文中,我们学会通过自我监督(自我强化)对视觉物体实例进行递增和分类。 我们的学习者一次观察一个实例,然后从数据集中丢弃。 递增实例学习具有挑战性, 因为较长的学习课会加剧遗忘性, 而标签则很繁琐。 我们通过三种贡献来克服这些挑战 :\ textit{i } 我们提议VINIL, 一个能够按顺序学习对象实例的自我强化学习者 。 } 我们为VINIL提供自我监督设备, 以绕过标签( \ textit{iii) 的需要。 } 我们比较VINIL 和两个大型基准的标签监督变体 {cite{core50,ilab20m}, 并表明VINIL 显著提高准确性, 同时减少遗忘性 。