Partial differential equations (PDEs) are among the most universal and parsimonious descriptions of natural physical laws, capturing a rich variety of phenomenology and multi-scale physics in a compact and symbolic representation. This review will examine several promising avenues of PDE research that are being advanced by machine learning, including: 1) the discovery of new governing PDEs and coarse-grained approximations for complex natural and engineered systems, 2) learning effective coordinate systems and reduced-order models to make PDEs more amenable to analysis, and 3) representing solution operators and improving traditional numerical algorithms. In each of these fields, we summarize key advances, ongoing challenges, and opportunities for further development.
翻译:偏微分方程(PDEs)是自然物理定律最普遍和最简洁的描述,可以用紧凑和符号化的表示捕捉各种现象和多尺度物理。 本综述将研究机器学习正在推动的几个有前途的PDE研究方向,包括:1)发现复杂自然和工程系统的新的PDE和粗粒化近似,2)学习有效的坐标系统和降阶模型,使PDE更易于分析,以及3)表示解算子并改进传统的数值算法。 在这些领域中,我们总结了主要进展,正在进行的挑战以及进一步发展的机会。