This paper considers distributed resource allocation and sum-preserving constrained optimization over lossy networks, where the links are unreliable and subject to packet drops. We define the conditions to ensure convergence under packet drops and link removal by focusing on two main properties of our allocation algorithm: (i) The weight-stochastic condition in typical consensus schemes is reduced to balanced weights, with no need for readjusting the weights to satisfy stochasticity. (ii) The algorithm does not require all-time connectivity but instead uniform connectivity over some non-overlapping finite time intervals. First, we prove that our algorithm provides primal-feasible allocation at every iteration step and converges under the conditions (i)-(ii) and some other mild conditions on the nonlinear iterative dynamics. These nonlinearities address possible practical constraints in real applications due to, for example, saturation or quantization among others. Then, using (i)-(ii) and the notion of bond-percolation theory, we relate the packet drop rate and the network percolation threshold to the (finite) number of iterations ensuring uniform connectivity and, thus, convergence towards the optimum value.
翻译:本文考虑了分布式资源分配和对损失网络保持限制优化的问题,这些网络的连接不可靠,而且受包装下降的影响。我们通过侧重于我们分配算法的两个主要特性,界定了确保组合滴落和链接清除下汇合的条件:(一) 典型的共识方案中的权重随机条件降低到平衡的重量,不需要调整重量来满足随机性。 (二) 算法并不要求全时连通,而是要求在某些非重叠的有限时间间隔中统一连通。 首先,我们证明我们的算法在每一个迭代步骤中提供了初步可行的分配,并在(一)-(二)和一些非线性迭代动态中集中了其他一些次要条件。这些非线性解决了实际应用中可能的实际限制,例如由于饱和或夸大等原因。然后,使用(一)-(二)和债券渗透理论的概念,我们将组合下降率和网络的渗透阈值与确保统一连通性连接并从而接近最佳价值的(最终)数目联系起来。