Due to their robustness to degraded capturing conditions, radars are widely used for environment perception, which is a critical task in applications like autonomous vehicles. More specifically, Ultra-Wide Band (UWB) radars are particularly efficient for short range settings as they carry rich information on the environment. Recent UWB-based systems rely on Machine Learning (ML) to exploit the rich signature of these sensors. However, ML classifiers are susceptible to adversarial examples, which are created from raw data to fool the classifier such that it assigns the input to the wrong class. These attacks represent a serious threat to systems integrity, especially for safety-critical applications. In this work, we present a new adversarial attack on UWB radars in which an adversary injects adversarial radio noise in the wireless channel to cause an obstacle recognition failure. First, based on signals collected in real-life environment, we show that conventional attacks fail to generate robust noise under realistic conditions. We propose a-RNA, i.e., Adversarial Radio Noise Attack to overcome these issues. Specifically, a-RNA generates an adversarial noise that is efficient without synchronization between the input signal and the noise. Moreover, a-RNA generated noise is, by-design, robust against pre-processing countermeasures such as filtering-based defenses. Moreover, in addition to the undetectability objective by limiting the noise magnitude budget, a-RNA is also efficient in the presence of sophisticated defenses in the spectral domain by introducing a frequency budget. We believe this work should alert about potentially critical implementations of adversarial attacks on radar systems that should be taken seriously.


翻译:雷达由于在捕获条件退化后变得强大,被广泛用于环境认知,这是自动车辆等应用中的一个关键任务。更具体地说,Utra-Wide Band(UWB)雷达在短程设置中特别高效,因为它们携带了丰富的环境信息。最近基于UWB的系统依靠机器学习(ML)来利用这些传感器的丰富特征。然而,ML分类系统很容易受到对抗性例子的影响,这些例子来自原始数据,用来愚弄分类者,从而让分类者向错误的阶层提供输入。这些攻击严重威胁系统的完整性,特别是安全临界应用程序。在这项工作中,Utratra-Wed-Wide Band(UWB)雷达具有新的对抗性攻击性攻击,在无线通信频道中,对敌人的对抗性无线电噪音造成障碍识别失败。首先,根据在现实环境中所收集的信号,我们显示常规攻击在现实条件下不会产生强烈的噪音。我们提议一个RNA(即Aversarial Raise Att)系统来克服这些问题。具体地说,关于R-NA的对抗性噪音对系统产生非对抗性噪音的噪音的噪音,在准确度上,在正常预算中,这种输入和动态的信号的信号的信号中产生高度的信号的信号,通过动态的信号的信号的信号,我们制造的信号是用来制造的信号, 和动态的动力的动力的动力的动力的动力,在战略的动力的动力的动力,在战略。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员