In this paper a variation of the classic vector quantization problem is considered. In the standard formulation, a quantizer is designed to minimize the distortion between input and output when the number of reconstruction points is fixed. We consider, instead, the scenario in which the number of comparators used in quantization is fixed. More precisely, we study the case in which a vector quantizer of dimension d is comprised of k comparators, each receiving a linear combination of the inputs and producing the output value one/zero if this linear combination is above/below a certain threshold. In reconstruction, the comparators' output is mapped to a reconstruction point, chosen so as to minimize a chosen distortion measure between the quantizer input and its reconstruction. The Comparison-Limited Vector Quantization (CLVQ) problem is then defined as the problem of optimally designing the configuration of the compactors and the choice of reconstruction points so as to minimize the given distortion. In this paper, we design a numerical optimization algorithm for the CLVQ problem. This algorithm leverages combinatorial geometrical notions to describe the hyperplane arrangement induced by the configuration of the comparators. It also relies on a genetic genetic meta heuristic to improve the selection of the quantizer initialization and avoid local minima encountered during optimization. We numerically evaluate the performance of our algorithm in the case of input distributions following uniform and Gaussian i.i.d. sources to be compressed under quadratic distortion and compare it to the classic Linde-Buzo-Gray (LBG) algorithm.


翻译:在本文中,对典型矢量量化问题的变异进行了考虑。 在标准配方中, 量化器的设计旨在将输入和输出之间的扭曲最小化, 当重建点的数量被固定时, 将输入和输出之间的扭曲最小化。 我们考虑的是量化中使用的参照方数量固定的假设情况。 更准确地说, 我们研究的是, 尺寸的矢量量化由 k 比较方组成, 每个输入和输出值的线性组合都得到线性组合, 如果这种线性组合高于/ 低于某一阈值, 则产生输出值为1/ / 零。 在重建中, 比较方的输出被映射到一个重建点, 以便尽可能减少定量输入方和输出方之间选择的扭曲。 比较- 矢量定量化( CLVQ) 问题被定义为: 最佳设计压缩器配置, 并选择重建点, 以最大限度地减少给定的扭曲值。 这个算法利用组合的几何测基数概念来描述在最小度输入方值输入方和最小化的货币缩略度中, 也依靠我们基因缩略度选择的缩略度的缩算值的缩略图, 。 也依赖了在基因缩略取的缩略取的缩略取的缩成结果中, 。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
159+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
干货 | 自然语言处理(2)之浅谈向量化与Hash-Trick
机器学习算法与Python学习
3+阅读 · 2017年12月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月16日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
159+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
干货 | 自然语言处理(2)之浅谈向量化与Hash-Trick
机器学习算法与Python学习
3+阅读 · 2017年12月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员