We consider a swarm of $n$ robots in a $d$-dimensional Euclidean space. The robots are oblivious (no persistent memory), disoriented (no common coordinate system/compass), and have limited visibility (observe other robots up to a constant distance). The basic formation task gathering requires that all robots reach the same, not predefined position. In the related near-gathering task, they must reach distinct positions such that every robot sees the entire swarm. In the considered setting, gathering can be solved in $\mathcal{O}(n + \Delta^2)$ synchronous rounds both in two and three dimensions, where $\Delta$ denotes the initial maximal distance of two robots. In this work, we formalize a key property of efficient gathering protocols and use it to define $\lambda$-contracting protocols. Any such protocol gathers $n$ robots in the $d$-dimensional space in $\Theta(\Delta^2)$ synchronous rounds. We prove that, among others, the $d$-dimensional generalization of the GtC-protocol is $\lambda$-contracting. Remarkably, our improved and generalized runtime bound is independent of $n$ and $d$. The independence of $d$ answers an open research question. We also introduce an approach to make any $\lambda$-contracting protocol collisionfree (robots never occupy the same position) to solve near-gathering. The resulting protocols maintain the runtime of $\Theta (\Delta^2)$ and work even in the semi-synchronous model. This yields the first near-gathering protocols for disoriented robots and the first proven runtime bound. In particular, we obtain the first protocol to solve Uniform Circle Formation (arrange the robots on the vertices of a regular $n$-gon) for oblivious, disoriented robots with limited visibility.
翻译:我们认为,在美元维度的 Euclidean 空间里,机器人的温温是1美元。在考虑的环境下,机器人的浓度可以用美元(不耐久的内存)解决,机器人的同步周期在两个和三个维度上都是模糊的(没有共同的协调系统/compass),并且只有有限的可见度(将其他机器人保存到一个恒定的距离 ) 基本的编队任务集合要求所有机器人都达到相同的、没有预先定义的位置。在与此相关的接近的收集任务中,机器人必须达到不同的位置,让每个机器人都能看到全部的体温。在考虑的环境下,集成可以用美元维度(n+delta2) 的平价(n+dice2) 美元同步周期解决。在两个维度的两维度($Delta$) 同步回合中,这表示两个机器人的初始最大距离。在这项工作中,我们将一个高效收集协议的关键属性正式化,用它来定义 $lambda 的订约协议。 任何这样的协议在美元维度空间里先收集美元(美元在美元维值的公元维度上), 直立地(xxxxxxxxxxxxxxxlxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx