Markerless motion capture has become an active field of research in computer vision in recent years. Its extensive applications are known in a great variety of fields, including computer animation, human motion analysis, biomedical research, virtual reality, and sports science. Estimating human posture has recently gained increasing attention in the computer vision community, but due to the depth of uncertainty and the lack of the synthetic datasets, it is a challenging task. Various approaches have recently been proposed to solve this problem, many of which are based on deep learning. They are primarily focused on improving the performance of existing benchmarks with significant advances, especially 2D images. Based on powerful deep learning techniques and recently collected real-world datasets, we explored a model that can predict the skeleton of an animation based solely on 2D images. Frames generated from different real-world datasets with synthesized poses using different body shapes from simple to complex. The implementation process uses DeepLabCut on its own dataset to perform many necessary steps, then use the input frames to train the model. The output is an animated skeleton for human movement. The composite dataset and other results are the "ground truth" of the deep model.


翻译:近年来,无标记的运动捕捉已成为计算机视觉研究的一个积极领域。它的广泛应用在很多领域都广为人知,包括计算机动画、人类运动分析、生物医学研究、虚拟现实和体育科学。估计人类的态势最近在计算机视觉界日益受到重视,但由于不确定性的深度和合成数据集的缺乏,这是一个具有挑战性的任务。最近提出了各种办法来解决这个问题,其中许多办法是以深层次学习为基础。它们主要侧重于改进现有基准的绩效,并取得显著进展,特别是2D图像。根据强有力的深层次学习技术和最近收集的真实世界数据集,我们探索了一种模型,可以预测仅以2D图像为基础的动画的骨架。由不同真实世界数据集产生的框架,这些框架使用从简单到复杂的不同身体形状合成的合成形形形形形体。执行进程在自己的数据集上使用DeepLabCut来实施许多必要的步骤,然后使用输入框架来培训模型。产出是人类运动的模拟骨架。复合数据集和其他结果是“地面”的模型。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
13+阅读 · 2020年8月3日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
12+阅读 · 2019年3月14日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Arxiv
2+阅读 · 2022年4月19日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
13+阅读 · 2020年8月3日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
12+阅读 · 2019年3月14日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
15+阅读 · 2018年6月23日
相关基金
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员