The Box--Cox transformation model has been widely applied for many years. The parametric version of this model assumes that the random error follows a parametric distribution, say the normal distribution, and estimates the model parameters using the maximum likelihood method. The semiparametric version assumes that the distribution of the random error is completely unknown; existing methods either need strong assumptions, or are less effective when the distribution of the random error significantly deviates from the normal distribution. We adopt the semiparametric assumption and propose a maximum profile binomial likelihood method. We theoretically establish the joint distribution of the estimators of the model parameters. Through extensive numerical studies, we demonstrate that our method has an advantage over existing methods, especially when the distribution of the random error deviates from the normal distribution. Furthermore, we compare the performance of our method and existing methods on an HIV data set.
翻译:方框- Cox 转换模型多年来被广泛采用。该模型的参数版本假定随机错误遵循参数分布,如正常分布,并使用最大可能性方法估计模型参数。半参数版本假设随机错误分布完全未知;现有方法要么需要强有力的假设,要么当随机错误分布明显偏离正常分布时效力较低。我们采用半参数假设,并提出一个最大剖面二进制可能性方法。我们理论上建立了模型参数估计员的联合分布。我们通过广泛的数字研究,证明我们的方法优于现有方法,特别是当随机错误分布偏离正常分布时。此外,我们还比较了艾滋病毒数据集中我们的方法和现有方法的性能。