Evaluating predictive performance is essential after fitting a model and leave-one-out cross-validation is a standard method. However, it is often not informative for a structured model with many possible prediction tasks. As a solution, leave-group-out cross-validation is an extension where the left-out-groups adapt to different prediction tasks. In this paper, we propose an automatic group construction procedure for leave-group-out cross-validation to estimate the predictive performance when the prediction task is not specified. We also propose an efficient approximation of leave-group-out cross-validation for latent Gaussian models. We implement both procedures in the R-INLA software.
翻译:评估预测性能是在拟合模型后必要的,而留一法交叉验证是一种标准方法。然而,对于存在许多可能预测任务的结构化模型,留一法交叉验证通常是不具体说明的。作为解决方案,留组外交叉验证是一种扩展方法,其中被遗漏的组适应于不同的预测任务。本文提出了一种自动的组建立程序以进行留组外交叉验证,以估计在未指定预测任务时的预测性能。我们还为潜在高斯模型提出了一种有效的留组外交叉验证近似方法,并在R-INLA软件中实现了两种程序。