In current virtual try-on tasks, only the effect of clothing worn on a person is depicted. In practical applications, users still need to select suitable clothing from a vast array of individual clothing items, but existing clothes may not be able to meet the needs of users. Additionally, some user groups may be uncertain about what clothing combinations suit them and require clothing selection recommendations. However, the retrieval-based recommendation methods cannot meet users' personalized needs, so we propose the Generative Fashion Matching-aware Virtual Try-on Framework(GMVT). We generate coordinated and stylistically diverse clothing for users using the Generative Matching Module. In order to effectively learn matching information, we leverage large-scale matching dataset, and transfer this acquired knowledge to the current virtual try-on domain. Furthermore, we utilize the Virtual Try-on Module to visualize the generated clothing on the user's body. To validate the effectiveness of our approach, we enlisted the expertise of fashion designers for a professional evaluation, assessing the rationality and diversity of the clothing combinations and conducting an evaluation matrix analysis. Our method significantly enhances the practicality of virtual try-on, offering users a wider range of clothing choices and an improved user experience.
翻译:暂无翻译