In this paper, we study the tradeoffs between the time speedup and the round complexity in the collaborative learning model with non-IID data, where multiple agents interact with possibly different environments and they want to learn an objective in the aggregated environment. We use a basic problem in bandit theory called best arm identification in multi-armed bandits as a vehicle to deliver the following conceptual message: collaborative learning on non-IID data is provably more difficult than that on IID data. In particular, we show the following: 1) Learning time speedup in the non-IID data setting can be much smaller than $1$ (that is, a slowdown). When the number of rounds $R = O(1)$, we will need at least a polynomial number of agents (in terms of the number of arms) to achieve a speedup $\tilde{\Omega}(1)$. This is in stark contrast to the IID data setting, where the speedup is always $\tilde{\Omega}(1)$ regardless of $R$ and the number of agents $K$. 2) Local adaptivity of the agents cannot help much in the non-IID data setting. This is in contrast with the IID data setting, in which to achieve the same speedup, the best non-adaptive algorithm requires a significantly larger number of rounds than the best adaptive algorithm.
翻译:在本文中,我们用非IID数据来研究合作学习模式的时间加速与全方位复杂性之间的权衡,其中多个代理商与可能不同的环境发生相互作用,他们希望在综合环境中学习一个目标。我们用多武装匪徒中称为最佳手臂识别的土匪理论中的一个基本问题来传递以下概念信息:非IID数据的协作学习比ID数据上的数据设置更为困难。特别是,我们展示了以下内容:(1) 非IID数据设置中的学习时间加快可能大大低于1美元(即减速 ) 。当数轮的R=O(1)美元时,我们至少需要多级的代理商(就武器数量而言)来加速 $tilde=Omega}(1)美元。这与IID数据设置截然不同,这里的加速总是$tilde=Omega}(1)美元(1美元,而不管代理人的数目是$K$(即减速 ) 。(2) 当数的代理商的适应本地化能帮助大大提高非IID数据排序速度时,在不进行最高级的亚化数据排序时,我无法大大地确定最先进的数字。