In this paper, we investigate the joint device activity and data detection in massive machine-type communications (mMTC) with a one-phase non-coherent scheme, where data bits are embedded in the pilot sequences and the base station simultaneously detects active devices and their embedded data bits without explicit channel estimation. Due to the correlated sparsity pattern introduced by the non-coherent transmission scheme, the traditional approximate message passing (AMP) algorithm cannot achieve satisfactory performance. Therefore, we propose a deep learning (DL) modified AMP network (DL-mAMPnet) that enhances the detection performance by effectively exploiting the pilot activity correlation. The DL-mAMPnet is constructed by unfolding the AMP algorithm into a feedforward neural network, which combines the principled mathematical model of the AMP algorithm with the powerful learning capability, thereby benefiting from the advantages of both techniques. Trainable parameters are introduced in the DL-mAMPnet to approximate the correlated sparsity pattern and the large-scale fading coefficient. Moreover, a refinement module is designed to further advance the performance by utilizing the spatial feature caused by the correlated sparsity pattern. Simulation results demonstrate that the proposed DL-mAMPnet can significantly outperform traditional algorithms in terms of the symbol error rate performance.
翻译:在本文中,我们调查了大规模机器类型通信(MMTC)中的联合设备活动和数据探测,这是一个阶段性不连贯的系统,其中数据比特嵌入试点序列,基站同时检测活动装置及其嵌入数据比特,而没有明确的频道估计。由于非连贯传输办法引入了相关的宽度模式,传统的近似电文传递算法无法取得令人满意的性能。因此,我们提议了一种深层次学习(DL)修改的AMP网络(DL-mAMPnet),通过有效利用试点活动相关关系,提高探测性能。DL-mMPnet是通过将AMP算法发展成一个进化神经网络,将AMP算法的原则数学模型与强大的学习能力结合起来,从而从这两种技术的优势中获益。在DL-mMPnet中引入了可培训参数,以近似相关扰动性模式和大规模淡化系数。此外,还设计了一个改进模块,以便利用由关联性磁力模型生成的空间特征,进一步推进性能。Simlamal-mamaismama eximlaminalbildromaisaldroisal mactaldaldalbalismaldaldaldaldalbaldaldaldaldaldaldaldaldaldalmmmmmaldaldaldalmmmmmmalmmmmmmmaldaldaldaldaldaldaldaldaldaldaldaldaldalmmmmmmmmmalmmmmmalmaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal) 。设计,从而进一步算,从而进一步算算,进一步算,从而进一步推算,从而进一步推算,从而进一步。 来进一步算。 进一步。 进一步制制制制的改进了进一步制制制制制制制,以进一步算。 模拟模型,从而进一步推算。 模拟模型,设计一个改进模型,进一步推进的模型显示出,