Deep learning is a powerful tool for solving nonlinear differential equations, but usually, only the solution corresponding to the flattest local minimizer can be found due to the implicit regularization of stochastic gradient descent. This paper proposes a network-based structure probing deflation method to make deep learning capable of identifying multiple solutions that are ubiquitous and important in nonlinear physical models. First, we introduce deflation operators built with known solutions to make known solutions no longer local minimizers of the optimization energy landscape. Second, to facilitate the convergence to the desired local minimizer, a structure probing technique is proposed to obtain an initial guess close to the desired local minimizer. Together with neural network structures carefully designed in this paper, the new regularized optimization can converge to new solutions efficiently. Due to the mesh-free nature of deep learning, the proposed method is capable of solving high-dimensional problems on complicated domains with multiple solutions, while existing methods focus on merely one or two-dimensional regular domains and are more expensive in operation counts. Numerical experiments also demonstrate that the proposed method could find more solutions than exiting methods.


翻译:深层学习是解决非线性差异方程式的有力工具,但通常,只有由于隐含的随机梯度梯度下降的正规化,才能找到与局部最小化标准相对应的解决方案。本文件建议采用基于网络的结构,探究通缩方法,使深层学习能够找出在非线性物理模型中普遍存在且重要的多种解决方案。首先,我们引入了有已知解决方案的通缩操作者,使已知的解决方案不再成为优化能源景观的本地最小化工具。第二,为了便利与所希望的本地最小化器的趋同,建议了一种结构测试技术,以获得与所希望的本地最小化器相近的初步猜测。与本文件精心设计的神经网络结构一起,新的常规优化可以有效地与新的解决方案汇合。由于深层学习的无网状性质,拟议方法能够解决复杂领域的高维度问题,同时现有方法仅侧重于一或二维常规域,操作成本更高。数字实验还表明,拟议方法可以找到比退出方法更多的解决方案。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Top
微信扫码咨询专知VIP会员