This paper presents a numerical study on multigrid algorithms of $V$-cycle type for problems posed in the Hilbert space $H(\mathbf{curl})$ in three dimensions. The multigrid methods are designed for discrete problems originated from the discretization using the hexahedral N\'{e}d\'{e}lec edge element of the lowest-order. Our suggested methods are associated with smoothers constructed by substructuring based on domain decomposition methods of nonoverlapping type. Numerical experiments to demonstrate the robustness and the effectiveness of the suggested algorithms are also provided.
翻译:本文介绍了对Hilbert 空间 $H (\ mathbf{curl}) 三个维度所造成问题的多格格程算法的数值研究。多格格程方法的设计针对的是使用最低顺序的六面形 N\'{e}d\'{e}lec 边缘元素产生的离散问题。我们建议的方法与以非重叠类型域分解方法为基础的下层结构构建的平滑器有关。还提供了数字实验,以证明所建议的算法的稳健性和有效性。