Combinatorial optimization is of general interest for both theoretical study and real-world applications. Fast-developing quantum algorithms provide a different perspective on solving combinatorial optimization problems. In this paper, we propose a quantum-inspired tensor-network-based algorithm for general locally constrained combinatorial optimization problems. Our algorithm constructs a Hamiltonian for the problem of interest, effectively mapping it to a quantum problem, then encodes the constraints directly into a tensor network state and solves the optimal solution by evolving the system to the ground state of the Hamiltonian. We demonstrate our algorithm with the open-pit mining problem, which results in a quadratic asymptotic time complexity. Our numerical results show the effectiveness of this construction and potential applications in further studies for general combinatorial optimization problems.
翻译:组合优化对于理论研究和现实世界应用都具有普遍意义。 快速发展的量子算法对于解决组合优化问题提供了不同的观点。 在本文中,我们建议为一般受当地限制的组合优化问题使用量子驱动的高压网络算法。 我们的算法为关注问题建造了一名汉密尔顿人,有效地将它映射成量子问题,然后将制约因素直接编码成一个 发源网络状态,并通过将系统发展到汉密尔顿人地面状态来解决最佳解决方案。 我们用开放式矿场问题展示了我们的算法,这导致了四面形无序的时间复杂性。 我们的数字结果显示了这种构造的有效性,以及在对一般组合优化问题的进一步研究中的潜在应用。