A significant level of stigma and inequality exists in mental healthcare, especially in under-served populations, which spreads through collected data. When not properly accounted for, machine learning (ML) models learned from data can reinforce the structural biases already present in society. Here, we present a systematic study of bias in ML models designed to predict depression in four different case studies covering different countries and populations. We find that standard ML approaches show regularly biased behaviors. However, we show that standard mitigation techniques, and our own post-hoc method, can be effective in reducing the level of unfair bias. We provide practical recommendations to develop ML models for depression risk prediction with increased fairness and trust in the real world. No single best ML model for depression prediction provides equality of outcomes. This emphasizes the importance of analyzing fairness during model selection and transparent reporting about the impact of debiasing interventions.
翻译:在精神保健中存在很大程度的污名和不平等,特别是在贫困人口中,这种不平等通过收集的数据来传播。当没有适当地考虑时,从数据中学习的机器学习(ML)模型可以加强已经存在于社会中的结构性偏见。在这里,我们提出了一项系统的偏见研究,研究了四个不同案例研究,涵盖了不同的国家和人口群体,旨在预测抑郁症的ML模型的偏见。我们发现,标准ML方法显示出定期的有偏行为。然而,我们展示了标准缓解技术和我们自己的事后方法可以有效地减少不公平的偏差水平。我们提供实用的建议,以开发具有增加公平性和信任的抑郁症风险预测ML模型。没有为抑郁症预测提供平等结果的最佳ML模型。这强调了在模型选择过程中分析公平性以及透明地报告去偏置干预影响的重要性。