Two-stage robust optimization problems constitute one of the hardest optimization problem classes. One of the solution approaches to this class of problems is $K$-adaptability. This approach simultaneously seeks the best partitioning of the uncertainty set of scenarios into $K$ subsets, and optimizes decisions corresponding to each of these subsets. In general case, it is solved using the $K$-adaptability branch-and-bound algorithm, which requires exploration of exponentially-growing solution trees. To accelerate finding high-quality solutions in such trees, we propose a machine learning-based node selection strategy. In particular, we construct a feature engineering scheme based on general two-stage robust optimization insights that allows us to train our machine learning tool on a database of resolved B\&B trees, and to apply it as-is to problems of different sizes and/or types. We experimentally show that using our learned node selection strategy outperforms a vanilla, random node selection strategy when tested on problems of the same type as the training problems, also in case the $K$-value or the problem size differs from the training ones.
翻译:两阶段强力优化问题构成了最优化问题类别之一。 解决这类问题的方法之一是 $K$ 可调适性。 这种方法同时寻求将不确定的情景组合最佳地分成为$美元子集,并优化与每个子集相应的决定。 一般来说,它采用“ $K$可调适的分支和约束算法”解决,该算法要求探索指数增长的解决方案树。 为了加速在这类树中找到高质量的解决方案,我们建议了一个基于机器学习的节点选择战略。 特别是,我们根据一般的两阶段强力优化洞察力设计了一个功能工程方案,使我们能够在已解决的B ⁇ B树数据库中培训我们的机器学习工具,并将其作为不同大小和/或类型的问题加以应用。 我们实验性地表明,我们所学的节点选择战略在测试与培训问题相同的类型时,会超越一个香草、随机节点选择战略,同样类型的战略,如果美元价值或问题大小与培训问题不同的话。