Numerous full-field numerical methods exist concerning the digital description of polycrystalline materials and the modeling of their evolution during thermomechanical treatments. However, these strategies are globally dedicated to the modeling of recrystallization and grain growth for single-phase materials, or to the modeling of phase transformations without considering recrystallization and related phenomena. A generalized numerical framework capable of making predictions in a multi-phase polycrystalline context while respecting the concomitance of the different microstructural mechanisms is thus of prime interest. A novel finite element level-set based full-field numerical formulation is proposed to principally simulate diffusive solid-solid phase transformation at the mesoscopic scale in the context of two-phase metallic alloys. A global kinetic framework, capable of accounting for other concomitant mechanisms such as recrystallization and grain growth is considered in this numerical model. The proposed numerical framework is shown to be promising through a couple of illustrative 1D and 2D test cases in the context of austenite decomposition in steels and compared with ThermoCalc estimations.
翻译:在多晶素材料的数字描述和热机械处理过程中对材料的演进进行模型化方面,存在着许多全方位的数字方法,然而,这些战略在全球范围内致力于单级材料的内晶化和谷物生长模型化,或者在不考虑内晶化和相关现象的情况下对阶段变形进行模型化。一个能够在多阶段聚晶素环境下作出预测,同时尊重不同微结构机制的共通性的普遍数字框架因此具有重大意义。在钢铁的超临界分解和与热热卡估计相比,在介于中间层的微固化阶段变形方面,提出了一个新的基于全场的有限元素定位的全基数配方,主要模拟显性固态变形。一个全球动能框架,能够考虑到内晶化和谷物生长等其他伴随机制。拟议的数字框架通过在钢铁中和热卡估计中的两例说明性1D和2D试验案例显示很有希望。