We consider variational regularization of nonlinear inverse problems in Banach spaces using Tikhonov functionals. This article addresses the problem of $\Gamma$-convergence of a family of Tikhonov functionals and assertions of the convergence of their respective infima. Such questions arise, if model uncertainties, inaccurate forward operators, finite dimensional approximations of the forward solutions and / or data, etc. make the evaluation of the original functional impossible and, thus, its minimizer not computable. But for applications it is of utmost importance that the minimizer of the replacement functional approximates the original minimizer. Under certain additional conditions this is satisfied if the approximated functionals converge to the original functional in the sense of $\Gamma$-convergence. We deduce simple criteria in different topologies which guarantee $\Gamma$-convergence as well as convergence of minimizing sequences.
翻译:我们考虑利用Tikhonov 功能对Banach空间的非线性反问题进行不同的正规化,这一条涉及Tikhonov功能家族的美元-Gamma$-汇合问题,并声称它们各自的功能趋同。如果模型不确定性、不准确的前方操作员、远方解决方案和/或数据等的有限维维近度使得无法对原始功能进行评估,从而无法对原始功能进行最小化计算。但对于应用来说,最重要的是,替换功能的最小化器要接近原始最小化器。在某些附加条件下,如果近似功能与原始功能汇合,即“$Gamma$-convergence”的含义。我们在不同的地形中提出简单的标准,保证$\Gamma$-convergence以及最小化序列的趋同。