It is common to use networks to encode the architecture of interactions between entities in complex systems in the physical, biological, social, and information sciences. To study the large-scale behavior of complex systems, it is useful to examine mesoscale structures in networks as building blocks that influence such behavior. We present a new approach for describing low-rank mesoscale structures in networks, and we illustrate our approach using several synthetic network models and empirical friendship, collaboration, and protein--protein interaction (PPI) networks. We find that these networks possess a relatively small number of `latent motifs' that together can successfully approximate most subgraphs of a network at a fixed mesoscale. We use an algorithm for `network dictionary learning' (NDL), which combines a network-sampling method and nonnegative matrix factorization, to learn the latent motifs of a given network. The ability to encode a network using a set of latent motifs has a wide variety of applications to network-analysis tasks, such as comparison, denoising, and edge inference. Additionally, using a new network denoising and reconstruction (NDR) algorithm, we demonstrate how to denoise a corrupted network by using only the latent motifs that one learns directly from the corrupted network.
翻译:通常使用网络来规范物理、生物、社会和信息科学复杂系统中实体之间的互动结构; 研究复杂系统的大规模行为,有必要研究网络中的中尺度结构作为影响这种行为的构件。 我们提出一种新的方法来描述网络中低层次中尺度结构,我们用若干合成网络模型和实验性友谊、协作和蛋白质-蛋白质互动网络来说明我们的方法。我们发现这些网络拥有相对较少的“相对的分子”,它们合在一起可以成功地接近固定中间尺度网络的大多数子集。我们使用“网络词典学习”的算法(NDL),它将网络抽样方法和非否定矩阵因子化结合起来,以学习某个特定网络的潜在模式。使用一套潜伏模型对网络进行编码的能力在网络分析任务方面有着广泛的应用,例如比较、分辨和边缘。 此外,我们使用新的网络“网络词典”的算法,仅通过一种腐败的网络去变和重组来直接展示腐败的网络(NDR) 。</s>