We present an extension of the summation-by-parts (SBP) framework to tensor-product spectral-element operators in collapsed coordinates. The proposed approach enables the construction of provably stable discretizations of arbitrary order which combine the geometric flexibility of unstructured triangular and tetrahedral meshes with the efficiency of sum-factorization algorithms. Specifically, a methodology is developed for constructing triangular and tetrahedral spectral-element operators of any order which possess the SBP property (i.e. satisfying a discrete analogue of integration by parts) as well as a tensor-product decomposition. Such operators are then employed within the context of discontinuous spectral-element methods based on nodal expansions collocated at the tensor-product quadrature nodes as well as modal expansions employing Proriol-Koornwinder-Dubiner polynomials, the latter approach resolving the time step limitation associated with the singularity of the collapsed coordinate transformation. Energy-stable formulations for curvilinear meshes are obtained using a skew-symmetric splitting of the metric terms, and a weight-adjusted approximation is used to efficiently invert the curvilinear modal mass matrix. The proposed schemes are compared to those using non-tensorial multidimensional SBP operators, and are found to offer comparable accuracy to such schemes in the context of smooth linear advection problems on curved meshes, but at a reduced computational cost for higher polynomial degrees.
翻译:暂无翻译