In real-world robotics applications, accurate models of robot dynamics are critical for safe and stable control in rapidly changing operational conditions. This motivates the use of machine learning techniques to approximate robot dynamics and their disturbances over a training set of state-control trajectories. This paper demonstrates that inductive biases arising from physics laws can be used to improve the data efficiency and accuracy of the approximated dynamics model. For example, the dynamics of many robots, including ground, aerial, and underwater vehicles, are described using their $SE(3)$ pose and satisfy conservation of energy principles. We design a physically plausible model of the robot dynamics by imposing the structure of Hamilton's equations of motion in the design of a neural ordinary differential equation (ODE) network. The Hamiltonian structure guarantees satisfaction of $SE(3)$ kinematic constraints and energy conservation by construction. It also allows us to derive an energy-based adaptive controller that achieves trajectory tracking while compensating for disturbances. Our learning-based adaptive controller is verified on an under-actuated quadrotor robot.
翻译:在现实世界机器人应用中,精确的机器人动态模型对于迅速变化的操作条件下的安全和稳定控制至关重要。这促使使用机器学习技术来估计机器人动态及其对一套国家控制轨迹培训的干扰。本文件表明,物理学法产生的感应偏差可用于提高数据效率和近似动态模型的准确性。例如,许多机器人的动态,包括地面、空中和水下飞行器的动态,用其3美元构成并满足了能源保护原则来描述。我们设计了机器人动态物理上合理的模型,在设计神经普通差异方程(ODE)网络时采用了汉密尔顿运动方程式的结构。汉密尔顿结构保证满足了3美元的运动制约和通过建筑节能。它还使我们能够获得一个基于能源的适应控制器,该控制器在进行轨迹跟踪的同时对扰动进行补偿。我们基于学习的适应控制器通过一个作用不足的昆虫体机器人进行验证。