Deepfakes pose a serious threat to digital well-being by fueling misinformation. As deepfakes get harder to recognize with the naked eye, human users become increasingly reliant on deepfake detection models to decide if a video is real or fake. Currently, models yield a prediction for a video's authenticity, but do not integrate a method for alerting a human user. We introduce a framework for amplifying artifacts in deepfake videos to make them more detectable by people. We propose a novel, semi-supervised Artifact Attention module, which is trained on human responses to create attention maps that highlight video artifacts. These maps make two contributions. First, they improve the performance of our deepfake detection classifier. Second, they allow us to generate novel "Deepfake Caricatures": transformations of the deepfake that exacerbate artifacts to improve human detection. In a user study, we demonstrate that Caricatures greatly increase human detection, across video presentation times and user engagement levels. Overall, we demonstrate the success of a human-centered approach to designing deepfake mitigation methods.


翻译:深度伪造技术对数字福祉构成严重威胁,因为它推动了错误信息。随着深度伪造技术变得越来越难以肉眼识别,人类用户越来越依赖于伪造检测模型来判断视频的真实性。目前,模型可以为视频的真实性提供预测,但不能提醒用户。我们引入了一个放大深度伪造视频瑕疵的框架,使人们能够更容易地发现它们。我们提出了一种新颖的半监督瑕疵关注模块,它使用人类反应来训练关注度图,来突出视频中的瑕疵。这些关注度图提供了两个贡献。首先,它们提高了我们的深度伪造检测分类器的性能。其次,它们使我们能够生成新颖的“Deepfake漫画”:伪造的变换,使瑕疵加剧,以便提高人类的检测能力。在用户研究中,我们展示了Caricatures大大增加了人类的检测能力,无论视频呈现时间和用户参与度如何。总体而言,我们证明了一个以人为中心的方法对深度伪造缓解方法的成功。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
32+阅读 · 2022年12月20日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员