Metric Temporal Logic (MTL) and Timed Propositional Temporal Logic (TPTL) are prominent real-time extensions of Linear Temporal Logic (LTL). In general, the satisfiability checking problem for these extensions is undecidable when both the future U and the past S modalities are used. In a classical result, the satisfiability checking for MITL[U,S], a non punctual fragment of MTL[U,S], is shown to be decidable with EXPSPACE complete complexity. Given that this notion of non punctuality does not recover decidability in the case of TPTL[U,S], we propose a generalization of non punctuality called \emph{non adjacency} for TPTL[U,S], and focus on its 1-variable fragment, 1-TPTL[U,S]. While non adjacent 1-TPTL[U,S] appears to be be a very small fragment, it is strictly more expressive than MITL. As our main result, we show that the satisfiability checking problem for non adjacent 1-TPTL[U,S] is decidable with EXPSPACE complete complexity.
翻译:时空逻辑(MTL)和时空假设逻辑(TTPL)是线性时空逻辑(TTL)的显著实时扩展。 一般来说,在使用未来的U和过去的S模式时,这些扩展的可视性检查问题是无法改变的。 典型的结果是,MTL[U,S]的不准时碎片MTL[U,S]的可视性检查被证明可以与 EXPSPACE 完全复杂地分解。 鉴于这种不准时的概念在TPTL[U,S]的情况下不能恢复可分性,我们建议将这些扩展的不准时性(称为TPTL[U,S]的不可逆性检查问题)加以概括化,并侧重于其1个可变碎片、1-TPTL[U,S]的可识别性检查。 虽然不相邻的1TPTL[U,S]似乎是非常小的碎片,但严格来说比MITL更清晰。 作为我们的主要结果,我们表明,SPTV的可探测性问题是完整的。