We propose a model order reduction approach for non-intrusive surrogate modeling of parametric dynamical systems. The reduced model over the whole parameter space is built by combining surrogates in frequency only, built at few selected values of the parameters. This, in particular, requires matching the respective poles by solving an optimization problem. If the frequency surrogates are constructed by a suitable rational interpolation strategy, frequency and parameters can both be sampled in an adaptive fashion. This, in general, yields frequency surrogates with different numbers of poles, a situation addressed by our proposed algorithm. Moreover, we explain how our method can be applied even in high-dimensional settings, by employing locally-refined sparse grids in parameter space to weaken the curse of dimensionality. Numerical examples are used to showcase the effectiveness of the method, and to highlight some of its limitations in dealing with unbalanced pole matching, as well as with a large number of parameters.
翻译:我们为非侵入性代用模拟参数动态系统建议了一个减少频率的模型方法。 整个参数空间的减少模型是按频率合并代用器, 仅以少数选定的参数值构建的。 这特别要求通过解决优化问题来匹配各自的极。 如果频率代用器是用一个适当合理的合理内插战略构建的, 频率和参数都可以以适应性的方式进行抽样。 一般来说, 产量频率是用不同数目的极来代替的, 这也是我们提议的算法处理的情况。 此外, 我们解释我们的方法如何在高维环境应用, 利用参数空间中本地精密的稀有电网来削弱维度的诅咒。 使用数字示例来展示该方法的有效性, 并突出它在处理不平衡的杆匹配以及大量参数方面的一些局限性。