Keeping track of scientific challenges, advances and emerging directions is a fundamental part of research. However, researchers face a flood of papers that hinders discovery of important knowledge. In biomedicine, this directly impacts human lives. To address this problem, we present a novel task of extraction and search of scientific challenges and directions, to facilitate rapid knowledge discovery. We construct and release an expert-annotated corpus of texts sampled from full-length papers, labeled with novel semantic categories that generalize across many types of challenges and directions. We focus on a large corpus of interdisciplinary work relating to the COVID-19 pandemic, ranging from biomedicine to areas such as AI and economics. We apply a model trained on our data to identify challenges and directions across the corpus and build a dedicated search engine. In experiments with 19 researchers and clinicians using our system, we outperform a popular scientific search engine in assisting knowledge discovery. Finally, we show that models trained on our resource generalize to the wider biomedical domain and to AI papers, highlighting its broad utility. We make our data, model and search engine publicly available. https://challenges.apps.allenai.org/
翻译:跟踪科学挑战、进步和新出现的方向是研究的一个基本部分。然而,研究人员面临大量阻碍发现重要知识的论文。在生物医学中,这直接影响到人类生活。为了解决这一问题,我们提出了提取和搜索科学挑战和方向的新任务,以促进快速知识发现。我们制作并发行了全长论文的附加注释的经专家文本集,标注了各种类型的挑战和方向。我们侧重于与COVID-19流行病有关的大量跨学科工作,从生物医学到AI和经济学等领域。我们应用了我们数据培训的模型,以确定整个物理领域的挑战和方向,并建立一个专门的搜索引擎。在与19名研究人员和临床医生利用我们的系统进行实验时,我们优于一个大众科学研究引擎,以协助知识发现。最后,我们展示了我们所培训的关于资源的一般模型,将其推广到更广泛的生物医学领域和AI文件,突出其广泛用途。我们公开提供我们的数据、模型和搜索引擎。https://challenges.aps.allenai.org/org。