We study fair and economically efficient allocation of indivisible goods among agents whose valuations are rank functions of matroids. Such valuations constitute a well-studied class of submodular functions (i.e., they exhibit a diminishing returns property) and model preferences in several resource-allocation settings. We prove that, for matroid-rank valuations, a social welfare-maximizing allocation that gives each agent her maximin share always exists. Furthermore, such an allocation can be computed in polynomial time. We establish similar existential and algorithmic results for the pairwise maximin share guarantee as well. To complement these results, we show that if the agents have binary XOS valuations or weighted-rank valuations, then maximin fair allocations are not guaranteed to exist. Both of these valuation classes are immediate generalizations of matroid-rank functions.


翻译:我们研究的是,在那些其估值是机器人等级功能的代理人之间,如何公平和经济有效地分配不可分割的商品,这种估值构成了一种经过良好研究的亚模式功能类别(即,它们显示出回报率下降的财产)和在若干资源分配环境中的模式偏好。我们证明,对于机车级别估值而言,始终存在社会福利和最大比例的分配,使每个代理人都享有最大份额。此外,这种分配可以在多元时间内计算。我们为对称最大份额担保也建立了类似的存在和算法结果。为了补充这些结果,我们表明,如果代理人拥有二进制XOS估值或加权估值,那么无法保证存在最高比例的公平分配。这两个估值类别都是对称最大份额功能的即时一般化。

0
下载
关闭预览

相关内容

可信机器学习的公平性综述
专知会员服务
67+阅读 · 2021年2月23日
【哈佛大学】图神经网络用于药物开发,35页ppt
专知会员服务
59+阅读 · 2021年2月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
18+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年3月29日
Policy Targeting under Network Interference
Arxiv
0+阅读 · 2021年3月25日
Arxiv
0+阅读 · 2021年3月25日
Arxiv
0+阅读 · 2021年3月25日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员