We investigate the efficiency of fair allocations of indivisible goods using the well-studied price of fairness concept. Previous work has focused on classical fairness notions such as envy-freeness, proportionality, and equitability. However, these notions cannot always be satisfied for indivisible goods, leading to certain instances being ignored in the analysis. In this paper, we focus instead on notions with guaranteed existence, including envy-freeness up to one good (EF1), balancedness, maximum Nash welfare (MNW), and leximin. We also introduce the concept of strong price of fairness, which captures the efficiency loss in the worst fair allocation as opposed to that in the best fair allocation as in the price of fairness. We mostly provide tight or asymptotically tight bounds on the worst-case efficiency loss for allocations satisfying these notions, for both the price of fairness and the strong price of fairness.


翻译:我们利用经过深思熟虑的公平价格概念来调查公平分配不可分割货物的效率; 以往的工作侧重于传统的公平概念,如忌妒、相称性和公平性; 然而,这些概念不能总是为不可分割货物所满足,从而导致分析中忽略某些情况; 在本文中,我们侧重于有保障存在的概念,包括无忌妒至一种商品(EF1)、平衡性、最大纳什福利(MNW)和法规。 我们还引入了强烈的公平价格概念,它抓住了效率损失,在最不公平的分配中,而不是在最公平的分配中,如在公平价格中那样。 我们大多为达到这些概念的分配提供最坏的效率损失的紧凑或间接的紧凑界限,既是为了公平价格,也是为了公平价格。

0
下载
关闭预览

相关内容

【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
7+阅读 · 2021年4月30日
VIP会员
相关VIP内容
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员